
2MEME

Wyatt L. Meldman-Floch

11/27/2023

Abstract

2MEME, a reputation model for p2p systems based on peer metadata
and cryptographically secure hashes, is presented. It is dynamic, not
relying on a set of trusted peers, and rotates the most accessible peers as
leaders: those with the minimal entropy rate relative to all peers, or peers
producing the most correct information. The core application and focus
is optimizing consistency of a multi-layered consensus protocol, achieving
Asynchronous Byzantine Fault Tolerance.

Contents

Forward 2

Introduction 3

System Architecture 4

Active Peer Selection . 9

Minimizing the Entropy Rate 9

L0 consensus: Permissionless vs Permissioned approaches 10

Monte Carlo simulation: estimation via self avoiding random walk 12

Classification logic 14

1

Experimental results 15

Sybil resistance 20

Sybil attack . 20

Lie and wait attack . 20

Eclipse attack . 21

Further investigation 21

Conclusion 22

Forward

The following is a solution of a long standing goal in the crypto ecosystem:
creating a consensus process that rewards good behavior and mitigates bad be-
havior, directly. A fundamental problem with existing blockchain technology is
that while it aims to achieve decentralization, both the logic and the algorith-
mic complexity of existing consensus protocols limit the group of individuals
who can mine to a small few. A core requirement to make mining accessible to
the average person i.e. run on consumer hardware, is to remove the barrier to
entry caused by proof or work which requires expensive hardware or proof of
stake which requires substantial financial capacity. A consensus protocol that’s
accessible to the average consumer will make mining a viable alternative to
application hosting and monetization of the web as a whole; as well as create
new systems of governance that can engage the average person to participate
in directly. It turns out that the solution is to provide incentives to nodes for
acting in a way that optimizes their consistency (the C in the CAP theorem)
and penalizes for network partitions.

2MEME is partially named because it incorporates two memetic concepts
into a sybil attack resistance model: relative entropy or information gain, defined
by the commonality of each node’s state and node influence, which calculates
how adherent each node’s behavior is relative to the total set of nodes’ behavior.
The adherence to a performance ’meme’ is how rewards are generated, essen-
tially paying nodes for being the most consistent (common state with the whole)
and the adherence to an influence ’meme’ is how sybil behavior is determined;
nodes that are not sybil follow a noisy distribution, while sybil nodes are identi-
fied by a strong signal. It’s also sort of the sequal to an older approach to solving
the above problem, which was called MEME. MEME differs from 2MEME in

©2023 Wyatt Meldman-Floch

that it didn’t use information gain as the feature space, opting to try and de-
fine a classifier and passing in a covariance matrix into the self-avoiding walk
below, then normalizing using entropy of the walk output. That older version,
which became Constellation’s PRO, relied on a set of pre-trusted peers, which
is a similar approach applied by most DAG protocols, but essentially became a
federated proof of authority. The improvement, which became 2MEME, stems
from application of a previous work, still in preprint, called the Generative Cal-
culus, and the algorithm/results here will be used to expand upon generative
calculus in that paper. 2MEME’s implementation within the reality protocol is
completely permission-less, but it could be re-written for a permissionned envi-
ronment which would result in a potential improvement on fault tolerance (at
least algorithmically, as it removes a serial state transition).

Note: This work is in pre-print and as of now a first-draft. The pseudocode
sections aren’t exactly the syntax I wanted but the pseudocode library is getting
the job done. Also, I’m still working on formatting the surface plots in the results
section. They’re actually rendered in 3d, so if you run the code yourself1 you
can re-orient to get different views of the surfaces.

Introduction

For a distributed system to maintain consistency, it needs to optimize infor-
mation gain and minimize discrepancies. One set of approaches rely on trust
or reputation models to mitigate potentially conflicting updates from untrusted
peers. There are many approaches to solving reputation problems in p2p net-
works. The most famous is Eigentrust, and there are many expansions upon
the base framework, such as Honestpeer and Powertrust. Due to the curse of
dimensionality, they all employ some type of random walk to explore the search
space of transitive trust between nodes, calculating a probability distribution
such as via Monte-Carlo integration to generate probabilistic trust scores of all
peers. These expansions typically focus on finding new features or representa-
tions of trust, such as in Deepwalk or Node2vec, which create an embedding of
social data to normalize the edge weights of the peer graph.

This paper follows a similar approach using entropy or disorder across peer
behavior and is specifically applied to a dag-based multi-layered consensus pro-
tocol. Whereas many approaches such as Eigentrust require a seed or whitelist
of authority nodes to base trust upon, this is insufficient when requiring de-
centralization such as for distributed consensus networks like cryptocurrencies.
2MEME circumvents this by determining correctness without pre-trusted peers,
allowing nodes to join and leave and preventing centralized control over consen-
sus.

1https://github.com/reality-foundation/reality/blob/enable model/simulation data/surface plot.py

3

The core of the algorithm extends from the principle of maximal entropy,
however applied in reverse. The maximum entropy principle states that new
information added to a system increases disorder relative to the previous state
of that system, proportional to novel information added. However, in the system
architecture described below, the data structures themselves optimize the spread
of incoming data via rumor based gossip such that discrepancies between peer
state form cliques representing potential network partitions.

Periodically, a self avoiding random walk is performed on a graph of nodes
representing peers, with the edges representing a vector of the entropy rate cal-
culated between data processed by each peer and the total set of data processed.
The model chooses correct nodes according to a ’node influence metric’ based
on ’availability’, which is defined as the most strongly linked nodes; ranking the
peers/nodes by how similar their behavior is relative to the total set of nodes’
behavior.

Another goal of 2MEME is to improve upon PRO models by handling node
’churn’ in a permissionless environment, achieving ’elasticity’ comparable to
elastic infrastructure like Elasticsearch and Elastic Map Reduce, while still
maintaining objective decentralization by operating without potentially fraud-
ulent human input.

System Architecture

The system considered here consists of a two layer consensus protocol, with two
separate consensus processes, L1 and L0, directly influencing each other. Future
work incorporating more consensus layers can be formulated using the Poincare
Protocol and Protocol Topology specified in Blockchain Cohomology2.

L1 peers perform a federated consensus of O(
∑

peers/3) ≡ O(n) complexity,
converging on the state of each peer’s state cache. The contents of each state
cache is a ledger of Addresses and collection of Transactions: data structures
performing the transfer of a numerical amount (tokens) from one Address to
another Address. Each Address has an associated linked list formed out of
Transactions sent from this Address. The links are recursive cryptographic
signature hashes between each sequential transaction at a discrete Ordinal.

Periodically, as each L1 node reaches the limit of its mempool or in response
to a timed trigger, they initiate a consensus process, acting as an ‘owner’ peer,
which selects two ‘facilitator’ peers to share its state cache with. The two
facilitator peers also share their state cache with each other, then back to the
owner, and then to all other peers. The output of this process is a data structure,

2Meldman-Floch, Wyatt, “Blockchain Cohomology: Sec 23’
http://ceur-ws.org/Vol-2478/paper2.pdf

4

Figure 1: L1 consensus

signed by the owner and facilitators, called a ‘block’ which consists of each peer’s
state cache data and two ‘parent edges’ called Tips, which are hashes of previous
blocks; the end result is a triangle, where two corners are tips and the third is
the new block. This can be conceptualized as a ‘triangulation of state’ which
forms a forward arrow of time out of parallel-process state transition data. This
is realized as a data structure called the ‘Data Dependency Graph’ which is a
directed acyclic graph of blocks with two parent edges, and three dimensions;
namely, height, width and depth.

These blocks constitute a directed acyclic graph called the Data Dependency
Graph and their contents are validated by the L0, which updates the ledger of
Addresses with valid Transactions. Both of these have a poset topology, from
which the forward arrow of time can be constructed out of parallel events. Each
block is then spread across all L1 and L0 peers via rumor based gossip, so that
they can be used as ‘Tips’ to form edges between old and new blocks.

Tips and Facilitators are selected using a pure function that seeks to maxi-
mize the area (in terms of dimensions: height, width and depth) thus increasing
the potential parallelism by enforcing consistency across all peers. L1 nodes are
pruned according to an entropy calculation by L0 nodes on the blocks they cre-
ate; each block is created deterministically according to the total set of tips and
peers, deviations from this result low rewards and in low trust. L1 trust scores
are then normalized between 1 and -1 with low trust outliers being removed and
addresses temporarily blacklisted.

Data contained in the L0 peer’s mempool, consisting of L1 blocks, is spread
amongst L0 peers via rumor based gossip with O(log(

∑
peers)) complexity,

converging the state of each peer to the union of all peers’. Periodically, as

5

Algorithm 1 L1 consensus algorithm

n← N ∈ N ▷ these are L1 nodes
n.mempool ≡ {Transactions}
n.mempool.size, n.mempool.triggersize ∈ N
n.mempool.size, n.mempool.triggersize← n
receivedOwnerProposal() : bool
recievedFacilitatorProposal() : bool
isOwnerPeer(n) : bool
while True do

if n.mempool.size ≥ n.mempool.t then
Create owner proposal
Send to 2 L1 peers
Validate responses
Form block and gossip to all L1 and L0 nodes

else if receivedOwnerProposal() then
Sign and send proposal made from current node’s mempool to other

Facilitator peer
else if receivedFacilitatorProposal() then

if isOwnerPeer then
Ensure both Facilitator proposals are equal
sign and send block (made of all 3 mempools) to other all L1 and

L0 nodes
else

Send Facilitator proposal to Owner
end if

end if
end while

6

the Data Dependency Graph reaches new heights or on a timed trigger in case
of low network traffic, each L0 peer proposes a Snapshot to its L0 peers using
rumor based gossip. The contents of these Snapshots are L1 blocks, and a
parent reference, formed out of recursive cryptographic signatures, to the peer’s
previous Snapshot proposal. This forms a sequential/poset topology for L0 peer
proposals like for Addresses. At each ‘height’ step, one proposal is selected from
the set of all proposals, deemed the Majority Snapshot. The Majority Snapshot
is chosen as the count of occurrences within the set of proposals, multiplied by
the total node influence or cumulative sum of trust scores of each peer that
proposed it.

Periodically, at an interval multiple of snapshot height called the ’height-
diff’ interval, the L0 nodes cycle between ‘active’ and ‘passive’ states. ’Active’
nodes actively perform consensus, ’passive’ nodes gather final snapshots and
index into a database (block explorer). The total number of ’active’ L0 nodes
is equal to

√∑
peers, thus the total complexity for ledger state convergence

(known as finality time) is O(
√∑

peers
2
)+O(log(n) = O(n)+O(log(n)). Peers

are cycled at each interval according to a deterministic locality sensitive hash
function applied to the last snapshot hash and all the L0 peer addresses that have
not been identified as Sybil; a node’s probability of selection is also influenced by
the amount of tokens in the address of the node, however the amount does not
affect the outcome of consensus (which constitutes proof of stake). Rewards for
each round are proportional to the cumulative sum of information gain reported
by L0’s peers and low trust outliers are blacklisted temporarily.

In both L0 and L1, a ’double spend’ or submission of invalid data as valid,
with the attempted result being the attribution of new tokens to some Address,
the node Address’s balance is reduced to 0 in a process known as ’slashing’. It
is also worth noting that, as shown via recursive tip structure, there is no fault
tolerance due to latency, thus it’s fault tolerance is asynchronous and achieves
Asynchronous Byzantine Fault Tolerance.

Finally, there is a meta-process running on all L0 nodes (both active and
passive), which acts as a block explorer in addition to validating L0 snapshots
and curating the list of all peers, namely the LΩ. All active L0 peers need to
sign the result of consensus (form a signature chain), which enforces convergence
before sending to the larger LΩ network, but also creates a record of divergence
(either malicious or not) and the nodes that diverged. If this happens, a health
check is performed, essentially asking for the missing data; if it is not received,
then the unresponsive peers are removed and consensus continues. In order to
maintain a consistent peer list, new peer requests are gossiped across the active
and passive nodes via LΩ and included in Snapshots.

7

Algorithm 2 LΩ

h, i ∈ N
H ≫ i
h← H
n← N ▷ these are LΩ nodes
n.mempool ≡ {Snapshots}
n.mempool.size, n.mempool.triggersize, n.peers.active, n.peers.passive ∈ N
n.mempool.size, n.mempool.triggersize, n.peers.active, n.peers.passive ←
n
h.signatureChain ≤ n.peers.active
isActive(n) : bool
invalidSnapshot(h) : bool
notUnique(h) : bool
for h← H do

if invalidSnapshot(h) then
Slash address value for all signatories on h
Remove invalid signatories from n.peers.active
if n.peers.active− invalidsignatories == 0 then

Recalculate active peers from previous snapshot and previous set
of inactive peers

Gossip new active state to all subscribers (including L1 and client
apps)

end if
else if notUnique(h) then

if h.signatureChain < n.peers.active then
Initiate health check/removal on missing peer ids

end if
Choose h with highest

∑
n score(n)

else if 0 ≡ h mod i == 0 then
Calculate new active peers
if isActive(n) then

Initiate active L0 process with other active peers
end if

else if 0 ≡ h mod i− 1 == 0 then
Send

else if ̸ isActive(n)& ̸ invalidSnapshot(h) then
Gossip join requests, Snapshots
Submit data to Downloading nodes
Process ledger state requests

end if
end for

8

Active Peer Selection

Active peer selection is performed by a deterministic locality sensitive hash
function which operates on a list of peers and chooses equal amounts randomly
between two partitions of active nodes; one partition A making up a minimum
of 50% of all staked tokens, and the second partition B containing all remaining
nodes. It’s clear to see that as the network grows it implies that B ≫ A due
to token scarcity. While this does provide an advantage for early users/token
holders, it mitigates the security risk inherent in horizontally scalable permis-
sionless networks (which get faster as the network grows) while still providing
ample possibility for new users (with lower stake) to participate.

Minimizing the Entropy Rate

Information gain can be formulated as the reduction of entropy or disorder in a
dynamical system and depending on the characteristics of the system, it is cal-
culated in one of many ways. For the purposes of 2MEME, which is formulated
for application to consensus networks, it is calculated as a stochastic process.
A stochastic process is an indexed sequence of random variables that do not
need to be independent or identically distributed. In a consensus network, each
peer continuously proposes variable state data, converging on an accepted state
according to the rules of the consensus algorithm. This state data, in our case
called blocks, can be independent or dependent on each other; and the amount of
blocks as well as the specific blocks proposed can fluctuate or differ completely.
Each block has an indexed order, or in the case of the system architecture above,
a poset topology; meaning that they are strictly ordered. Thus these distributed
systems fulfill the requirements of a stochastic process and can be modeled as
such. While it is possible to apply 2MEME to linear blockchain protocols, it was
formulated specifically for use in the system architecture above, with three in-
dices: height, width and depth. The following formulas are specific to this poset
topology. Consider a set of peers N = (n0. . . ni), acting as random variables
which produce outputs O = (o0,0,0. . . oh,w,d), such that h < w and w > d, the
system has a strict order given by poset topology. These indices can be reduced
to discrete indexes, such that each index, there is a binary value representing
each node proposing a specific block or not. This is calculated using following
formula3 for joint entropy

H(N) = −
∑

n1∈N1

· · ·
∑

xn∈Nn

P (n1, . . . , nN)log2[P (n1, . . . , xn)] (1)

the limit of which as h, w, d approaches infinity gives the entropy rate. If a
block index contains each node, then the specific block has entropy of 0. If it

3thm 2.4 ’https://math.nd.edu/assets/275279/leblanc thesis.pdf’

9

contains |n| < N , the entropy is > 0. Conversely, if nodes propose blocks such
that their indices conflict with other proposals, they contribute to the overall
disorder in the system. Proposed blocks with valid yet duplicated data, con-
tribute to overall disorder as well. Thus the state with the minimal entropy can
be considered the greatest common subset of all proposed blocks, and entropy
calculated as deviation from the greatest common subset. Note that in the case
of graph partitions that are not within this subset, yet still contain valid data,
the data should still be contained within the overall state transition, however the
node that only processed it’s lone subset can be considered faulty (potentially
Sybil) in terms of consistency and partition tolerance (CAP). In order to pro-
mote consistency, a rumor based gossip algorithm propagates blocks, calculating
signatures upon them, which then can be used as Tips, to optimize for a maxi-
mal subgraph of peers to accept the block and propose it within its Snapshot.
This impedes several sybil attacks such as lie and wait and ddos, by attempting
to create the longest signature chain as possible, i.e. the largest common subset;
nodes attempting these types of attacks are identified via independent subsets
and/or invalid blocks.

Finally, the inner product of entropy rates are used to construct a feature
space F before passing into the random walk below (first part of 2MEME)

F =
∑
N

λN |Nn⟩ ⟨Nn| (2)

where λ is a normalization function that maps the sum to between -1 and 1.

L0 consensus: Permissionless vs Permissioned ap-
proaches

Two algorithms for gathering entropy data are presented below. The key algo-
rithmic difference is the rate and logic for making proposals.

The first enforces a service level agreement requiring each peer to train its
model at the same rate, achieving greater determinism and enabling a token
reward model for an open network and preventing nodes’ ability to forge scores
to manipulate the selection algorithm; by first committing an encrypted hash
of their scores to the ledger, then sending the unencrypted scores so peers can
calculate the Majority Snapshot. In the batch model, at every snapshot height-
diff interval, each peer proposes a new predicted trust vector (scores) within
their proposals. They are then used to weight peer proposals for the Majority
Snapshot calculation.

The second, online algorithm, reduces the in-memory cost of running each

10

Algorithm 3 Batch Algorithm (permissionless): Entropy Rate (Optimal for
node rewards/cycling between active and passive nodes)

h, i ∈ N
H ≫ i
h← H
n← N ▷ these are L0 nodes
n.mempool ≡ {Blocks}
n.mempool.size, n.mempool.triggersize ∈ N
n.mempool.size, n.mempool.triggersize← n
for h← H do

if 0 ≡ h mod i− 1 == 0&n.mempool.size ≥ n.mempool.t then
stateSpace = entropy(N) ▷ Entropy rate relative to GCS
probabilitySpace = selfAvoidingWalk(statespace)
Send encrypted probabilitySpace to peers within Snapshot
Choose proposed snapshots weighted by cumulative sum of scores

else if 0 ≡ h mod i == 0&n.mempool.size ≥ n.mempool.t then
Send unencrypted probabilitySpace within snapshot to peers
if valid(n),∀n ∈ N then

for n← N do
Update scores for peers
Choose Majority Snapshot
Update active and passive peerlist

end for
end if

else if n.mempool.size ≥ n.mempool.t then
Send snapshot to peers
Choose proposed snapshots weighted by cumulative sum of scores

end if
end for

11

peer’s model on a deterministic schedule albeit at the loss of determinism that
would allow fair selection of validators. It is more suited perhaps to appli-
cations that can relax determinism required by an open network to focus on
elasticity. The online algorithm periodically gossips predicted trust vectors to
peers over the Peer api endpoint (“ /trust”), which are then cached and fed into
the TrustManager on a time based periodic interval.

Algorithm 4 Online Algorithm (permisioned): Approximate Entropy Rate
(current implementation, optimal for minimal resource usage, training model
over shorter periods should help output, spamming results/sybil collusion should
be detected by model, good test)

h, i ∈ N
H ≫ i
h← H
n← N ▷ these are nodes
n.mempool ≡ {Blocks}
n.mempool.size, n.mempool.triggersize ∈ N
n.mempool.size, n.mempool.triggersize← n
e = rand() : bool ▷ This is a timed based trigger
while True do

if n.mempool.size ≥ n.mempool.t&e == True then
statespace = entropy(N) ▷ Entropy rate relative to GCS
probabilitySpace = selfAvoidingWalk(statespace)
Send unencrypted scores to peers in Snapshot
Update active and passive peerlist

elsen.mempool.size ≥ n.mempool.t
Send snapshot to peers
Choose Majority Snapshot

end if
end while

Monte Carlo simulation: estimation via self avoid-
ing random walk

Next a self-avoiding walk is employed to perform community detection, the
output of which can be used to calculate availability and node influence4. Note,
to avoid confusion between a consensus network and graph, nodes are called
servers below.

The output of the entropy rate calculation is a graph, with a server’s peers
corresponding to nodes and edges as the relative joint entropy between the

4https://www.sciencedirect.com/science/article/pii/S0378437118304242

12

server and its peers. The edges are a ‘view’ of the performance of each peer
relative to itself. This matrix (namely F =

∑
N λN |Nn⟩ ⟨Nn|) is passed to

the TrustManager, a background process that performs a self-avoiding random
walk across the graph of nodes connected by relative joint entropy and outputs
a vector containing a trust score for each node relative to the server hosting
running the process (predicted trust). Pseudocode for this and the following
methods are omitted due to length, but can be found in the Reality Protocol’s
codebase5.

The self avoiding walk is performed by the method runwalkfeedbacksinglen-
ode, which performs a series of feedback rounds, walking on the input graph and
adjusting the edge weights between nodes for each successive round. The total
number of feedback cycles are configurable and in general the larger number of
cycles has a more accurate output, albeit at the cost of increasing resource in-
tensity. The configurations are batchIterationSize and maxIterations. On each
batch iteration a random path length from a random number generator (be-
tween 1 and total nodes) is chosen and then passed to the walk. The walk goes
through and only walks on positive edges (relative entropy scores are normal-
ized between -1 and 1), keeps track of nodes visited so far, then the sampling
function determines the next neighbor to walk on. This is determined according
to the normalized probability (via method normalizedPositiveEdges), such that
the positive edge subset sum up to one.

As this iterates, transitive trust scores are added, because products of trust
are quite small. However, over many iterations they sum, to large numbers which
is better for differentiating between scores. The main walk function walk() gets
invoked by walkFromOrigin() inside runWalkRaw() which iterates over numIt-
erations, adding up the scores into val walkScores for each node, removing the
server’s own. After that function is called, one “batch” has been created.

Finally there is batch convergence in runWalkBatchesFeedback. This con-
verges when a delta variable, which is just root mean squared error, becomes less
than or equal to an epsilon variable, where epsilon is set to 1e-6; i.e the function
terminates when scores don’t change between batches by one part in a million.
The output of the walk, batchScores, is not normalized, so they are renormalized
by the Normalize function between each iteration until convergence.

One difference from similar models is the incorporation of negative scores.
After the batches are performed, it explores the negative scores (val nega-
tiveScores) of nodes that it trusts (positive outputs of the walk). On the first
cycle, the model only reaches nodes with positive transitive trust, which can
be considered the most influential servers. These most influential servers are
relative to the host server, and the servers they distrust have their scores down
weighted. The positive scores and negative scores are added, then weighted by

5https://github.com/reality-foundation/reality/tree/enable model/modules/sdk/src/
main/scala/org/tessellation/sdk/infrastructure/trust

13

how influential the server proposing these scores is. They are weighted such
that its negative edge trust quantity*(influential node’s score/numNegEdges),
after that they are all normalized via renormalizeAfterNegative. Output, Ph

i is
defined as follows.

Given a source node i, suppose it is possible to reach Ni(h) different nodes
performing walks of length h, departing from i. Then we say that i has Ni

neighbors at a distance h. Each neighbor is reached with a different proba-

bility, which is represented by the vector Ph
i = {P (h)

1 . . . P
(h)
Ni(h)

} Given Ph
i ,the

accessibility ki(h), defined below is

k(h) = exp

−∑
j

phj logp
h
j

 (3)

Classification logic

Now that we have a manifold of node influence, we can look for signals between
sybil and non-sybil nodes and build a classifier. Pseudocode for the classifier is
omitted due to length, but can be found in the Reality Protocol’s codebase6.

The classifier defined as follows simply looks at the first three principal
eigenvectors (those with the largest three eigenvalues), to identify sybil nodes.
Its quite possible to improve upon the experimental results using a differential
equation solver as provided in Tensorflow 7 or Pytorch8, which would be able at
least incorporate higher order terms and improve distribution fit, if not catch
hidden nonlinear signals. As you’ll see, the classifier follows steps similar to
those in analytically solving systems of differential equations.

First a new vector consisting of the successive diffs, normalized between 0
and 1, between all elements in Ph

i is calculated, namely dhi which has dim(i, h−1)
then generate a manifold from direct sum with itself:

dhi ⊕ dhi (4)

calculate the principal components (eigenvectors sorted by highest eigen-
value), λ1, λ2, λ3 as well the ’max plane’ pi, similar to the ’top hat’ in signal/-
fourier analysis which is an index range in dhi with flat values (not perfectly flat,

6https://github.com/reality-foundation/reality/blob/enable model/modules/sdk/src/
main/scala/org/tessellation/sdk/infrastructure/trust/TrustModel.scala

7https://www.tensorflow.org/probability/api docs/python/tfp/math/ode
8https://github.com/rtqichen/torchdiffeq

14

all diffs are within a threshold of the mean µ or a minimum of 0.1), the ’right
bias’ br and ’left bias’ bl which are the ration of total sum of values to the left
of pi divided by total scores and total sum of values to the right of b divided by
total scores respectively. Finally consider ’population diffs’

λpop = 1− (λi−left/λi−right) (5)

where 1 − (λi−left/λi−right) are the population or number of nodes contained
within biases calculated from each of the principal eigenvalues.

Now, there are five scenarios to determine non-sybil nodes: first if the max
plane makes up over 20% of the distribution and either biases are less than 90%
of the distribution, return the biases as non-sybil nodes. Second, if either the
absolute value of the ratio of mean to population variance is less than 1x10−17

or the difference between the absolute value of the first principal component
and the absolute value of the second principal component is greater than the
population standard deviation by 30%, return the entire set of Pi. Third, if the
difference between the principal and second principal eigenvector is greater than
the population standard deviation by 20% or the minimum population diff (of
all 3) is the population diff of the maximum principal component, then if the
difference between the absolute values of the population biases of the principal
eigenvalue |λleft| − |λright| is greater than the population standard deviation,
return the right bias of the max principal component; if only the first condition
is true, return the left bias of the max principal component. Next he same logic
is then applied for the second and third principal components.

Finally, if the total non-sybil nodes to be returned are less than 10% of the
population (90% identified as sybil), return the entire set of nodes.

Experimental results

The following results were generated from a simulation involving 100 node in-
stances. Several simulations were run for various types of attacks, which will
be outlined below, and with varying percentages of sybil nodes all acting in
unison from 0% to 100% in 20 percent intervals. Each type of attack can be
reduced down to sybil nodes reporting scores of themselves or non-sybil nodes
according to a distribution i,e low scores for non-sybil or high scores for sybil
nodes. In the following visualizations, each attack type occurs on the y axis,
the sybil percentage is given by the x axis and the z axis is the performance,
either F-score of the classifier or a gain in selection rate.

F-score, specifically F1-score was chosen as that performance metric because
it’s application to classifiers, specifically binary classifiers, is widely accepted.
The F-score is the geometric mean of precision and recall, which means that it

15

measures not just the ability of the classifier to filter out sybil nodes, but also
to not remove non-sybil nodes. The choice of using F1 in the first plot came
from the desire to show fairness as opposed to just the removal of sybil nodes
(i.e. include false negatives). The second performance metric chosen was the
ratio of false positives vs true positives, which is an accuracy metric showing
the percentage of sybil nodes in the output of the classifier; at most an average
of 3.5% of the sybil group were not removed.

Note that many different scenarios are tested within unit tests and the simu-
lation framework, notably analysis of sybil score cliques which submitted scores
according to non-uniform distributions (i.e. linear), however the model was
equally as good at identifying them as for uniform scores (1.0, -1.0, 0.5 etc.
except for 0.0), but the test data is of different dimensionality and the code will
need to be refactored before expanding the visualization. It’s also worth noting
the as the clique size increases to the size of the total set of nodes, we see per-
formance mirroring that of the perfect non-sybil case, which is expected. Also
sybil nodes reporting forged scores for non-sybil nodes was equally identified as
self-reports.

The tests used in visualization are as follows:

organicDistroDir: no attack, organic behavior from each node

symmetricSybilOne: all sybil nodes give each other the max value in their
proposal.

symmetricNegOne: all sybil nodes give each other the min value in their
proposal.

symmetricZeroSybil: all sybil nodes choose 0.0 as their proposal for each
other.

symetricLinearDistro: all sybil nodes propose increasing scores for each other
in a linear distribution.

Here we have a surface plot of F-score according to attack and sybil thresh-
old. As we can see, the most effective attack is for sybil nodes to self report
scores of 0.0, yielding a minimum F-score of 0.73, the reduction here coming
from false negatives. This is still a solid score for any classifier and compared
to existing consensus models (i.e. Bitcoin) which has an F-score of 0 for sybil
percentages above 50 percent (due to the fact that one outcome of a 51% attack
is removal of non-sybil nodes), is remarkably successful and provides a huge
comparative advantage.

Here we have a plot of false positives / true positives. As mentioned above,
F-scores drop primarily due to false negatives. However for our model which
is most focused on removing sybil nodes, we can see that very few are not

16

Figure 2: F-scores by each attack type and sybil threshold

17

Figure 3: False positive / true positive by each attack type and sybil threshold

18

Figure 4: Sybil node gain

removed; specifically the small bump in symmetricZeroSybil has a maximum of
0.035, meaning only 3.5% of nodes selected are from the sybil group. The spike
at the end is the 100% sybil case, which is where the model breaks down (note
the actual was 1/0, so a value of 1.0 was imputed.)

Here we have a plot of the difference between nodes cheating and not cheat-
ing. The vertical axis is the percent increase in sybil nodes (forging scores) that
are selected for the next round of consensus vs if they actually just submitted
scores based upon their true entropy rate (not cheating). The ledge on the
top left represents the perfect non-sybil case (0%) and the top right shows the
100% sybil case; both of these shows 100% of nodes selected for next round (as
expected). Most importantly, the flat plane shows that the only sybil nodes
selected would have been selected anyway, based upon their immutable entropy

19

rate; this means that the classifier removes gains from cheating.

Sybil resistance

Open networks pose inherent security risks deriving from Sybil attacks; where
a group of individuals attempt to forge network or ledger state. The attack
surface grows as the cost for participation, either through hash power or stake,
is reduced; essentially reducing the cost of a sybil attack by minimizing the
cost to run sybil nodes. This has the transitive effect of also reducing the
efficacy of horizontal scaling techniques, which increase speed as a function
of the number of nodes. 2MEME mitigates these attacks in such a way that
promotes participation (low fees and high transactions per second), both as a
miner and a user.

Sybil attack

As shown in the false positive vs true positive plot, the classifier is able to
remove the vast majority of sybil nodes (at most a 3.5% sybil rate) and only
fails with close to 100% sybil rate. That being said, given that the size of the
active peers is much less than the passive, it would be feasible, albeit of a low
probability, that entire committees of active nodes could be sybil. However, our
approach is still able to increase the cost required for a 100% successful sybil
attack beyond the typical 51%.

Active L0 nodes are chosen from two buckets: the smallest set of nodes who’s
stake adds up to a minimum of 50% and the rest of the nodes. Because of this,
the cost to achieve a sybil attack with 100% guarantee (i.e. all active nodes are
sybil) would require over 50% of the total stake in the network and over 50% of
the total hash power (number of nodes); most permissionless networks require
only one of these to be over 50% to fail whereas this system requires both.

Consider the case where 10% of all L0 nodes contain over 50% of staked
tokens and the other 90%makes up less than 50%, that would mean a guaranteed
attack requires over 50% of staked tokens and up to 100% of the hash power.
This is considerably more costly than pure POW or POS which fail above 50%
controlling hash power or stake, respectively.

Lie and wait attack

In a reputation system, a lie in wait attack occurs when nodes increase their
reputation so that it can then use the high score later for abuse. In 2MEME,

20

reputation is calculated based on an immutable log of information gain for
each system, however the specific reputation score only has relevance within the
context of the information gain of all other nodes and is ephemeral. Thus due to
the nature of the model, which doesn’t carry over reputation values between the
active/passive cycle, it’s not possible to ’save up reputation points’ and spend
them on an attack.

The closest one could come to this attack is performing well by producing
minimal entropy in every snapshot throughout the entire consensus round, and
then forging their score proposals, however this is the focus of the various attacks
in the experimental analysis section and the model has shown to be successful
at identifying sybil nodes regardless of their scores, or the distribution of scores
across all sybil nodes.

Eclipse attack

As shown in the LΩ definition, the result of a 51% attack is a network partition
where the offending nodes would only have an invalid chain state. This is
essentially how one would perform an Eclipse attack, where offending nodes
send incorrect peer data or chain data to a newly joining node. In this case,
honest nodes would not be able to join the invalid partition (validation of the
download step from a sybil node would not pass) and honest subscribers such
as client utilities or L2 applications would be able to identify a sybil partition
via invalid published snapshots. The end result of a wider 51% attack would be
an increase in latency (as for an ordinary network partition) as opposed to an
invalid chain state.

Further investigation

Modifications to the self-avoiding walk implementation could yield positive ef-
fects. As in many Monte Carlo integrations, the direction chosen at each step
could be chosen according to a distance metric as opposed to randomly. Albeit,
at the computational cost of increasing the dimensionality of the trust graph’s
edges as well as in-memory expense of the metric calculation. Notably, this
approach was employed by N. Koroviako9 who used Jaccard similarity to define
trust out of relationships between review texts; as 2MEME’s approach focuses
on information gain, it would follow to select the next path at each step based
on minimizing entropy rate of second order proposals (each edge would contain
raw proposals, and choose the next node that has the minimal entropy rate
compared to the current’s proposals.)

9https://www.sciencedirect.com/science/article/pii/S1877050912003936?ref=pdf download&fr=RR-
2&rr=8306a2ef2866cee9

21

As our SAW has non-linear (fractal) dimensionality10, another possible im-
provement could come from using Hausdorff clustering11 to identify embedded
hierarchies (perfom classification in terms of the surface of clusters); this could
have applications in further anomaly detection providing higher dimensions of
entropy, which would be useful for improving the classifier with a differential
equation solver or perhaps a graph embedding/deep learning approach. Note
that the node influence metric calculated by the SAW is not strictly defined (it
does not strictly obey the triangle equality, thus it’s a measure not a metric) so
it is actually compatible for the Hausdorff measure.

The cryptographic signatures described in the system architecture use ECDSA.
However, with the dawn of quantum computers and the fact that elliptic curve
cryptography is vulnerable Shor’s algorithm12 new ’post-quantum’ cryptogra-
phy (PQC) has been introduced which would allow 2MEME to remain effective
in a post-quantum world. Fortunately, due to the structure of the key util-
ities in our codebase, we can easily swap out ECDSA for these newer PQC
implementations.

Conclusion

It’s been shown that 2MEME incentivizes consistency by rewarding nodes ac-
cording to their information gain. Also by showing a lack of gain for sybil nodes
while still minimizing removal of non-sybil nodes (as evidenced by the F-score
distributions,) 2MEME is able to provide a fair playing field for honest nodes.

10http://www.math.uchicago.edu/ lawler/miami1.pdf
11https://arxiv.org/pdf/0801.0748.pdf
12https://arxiv.org/pdf/1804.00200.pdf

22

	Forward
	Introduction
	System Architecture
	Active Peer Selection

	Minimizing the Entropy Rate
	L0 consensus: Permissionless vs Permissioned approaches
	Monte Carlo simulation: estimation via self avoiding random walk
	Classification logic
	Experimental results
	Sybil resistance
	Sybil attack
	Lie and wait attack
	Eclipse attack

	Further investigation
	Conclusion

